ILLINOIS INSTITUTE‘W
OF TECHNOLOGY

2% Fermilab

Six-dimensional ionization cooling:
options, issues and R&D (MICE)

Pavel Snopok

lllinois Institute of Technology and
Fermilab

July 15, 2014




Q P\CC@/@ .

F \y %,

OF TECHNOLOGY

{& Fermilab
* Motivation
* lonization cooling
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 R&D: MICE
 Summary

Outline

July 15, 2014 P. Snopok, Six-dimensional ionization cooling 2



Q P\CCG/@ .

Q \,’ o,
T

’ofOQra“\

OF TECHNOLOGY

2& Fermilab

oo (+) Muons are elementary
Complex at Fermilab: . [
R —— particles, clean collisions at full
e [ energy. Advantage over protons
where only fraction of the
energy goes into quark-quark
collisions.

* (+) Muons are much heavier
than electrons, no
bremsstrahlung issue. Compact
footprint.

(-) Muons decay (1=2.2 us at rest), need to be focused and

accelerated fast.
(-) Tertiary production results in large phase space volume,
need beam size reduction (=cooling).
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Introduction: NF & MC
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« Schematics of the neutrino factory (top) and muon collider (bottom)
 Initial collection and cooling are the same in both machines
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lonization cooling

NF/MC are tertiary beam machines (p = 1T = p).
Emittances coming out of the target are very large.

Need intense y beam =» need to capture as much as
possible of the initial large emittance.

Large aperture acceleration systems are expensive =
for cost-efficiency need to cool the beam prior to
accelerating.

NF requires a modest amount of initial 6D cooling.

MC designs assume significant, O(10°) six-dimensional
cooling.

Need to act fast since muons are unstable. The only
feasible option is ionization cooling.
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« de/ds is the rate of normalized emittance
change within the absorber; c, E , and m
are the muon velocity, energy, an mass
is the lattice betatron function at the
absorber; and X, the radiation length of the

absorber material. Need low 8, , large X,.

1. Energy loss in material (all three
components of the particle's momentum are
affected).

| 2. Unavoidable multiple scattering (can be
: minimized by choosing the material with
large X,, hence, low Z.

3. Re-accelerate to restore energy lost in
material. Only the longitudinal component
of momentum is affected.
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Incident Muon Beam

Dipole magnet

Wedge absorber

Ap/p

<«

S\ e
6D cooling via emittance exchange T’C}(l

<

« Emittance exchange

principle: instead of letting the
beam with zero dispersion
through a flat absorber, we
introduce dispersion and let
the particles with higher
momentum pass through
more materials, thus reducing
the beam spread in the
longitudinal direction.

Another option would be to
control particle trajectory
length in a gas-filled channel.

See also next talk by Diktys
Stratakis.
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* MAP: Muon Accelerator Program formed in 2010 to unify the DOE
supported R&D in the U.S. aimed at developing the concepts and
technologies required for muon colliders and neutrino factories.

- IBS: Initial Baseline Selection process aimed at producing initial
designs of all key accelerator systems for muon-based neutrino
factories and colliders.

absorber coil cavities TOP VIEW
l, — v — —
I BN By B
st [e— [rm—) —
SIDE VIEW

* We have two key alternatives we are pursuing for the 6D cooling channels.

» Left: high-pressure gas-filled RF helical cooling channel (HCC).

* Right: vacuum RF rectilinear cooling channel (VCC).

» IBS encompasses other systems as well: in particular, initial cooling channel,
bunch merging, charge separation, and final cooling.

July 15, 2014 P. Snopok, Six-dimensional ionization cooling 8



NG
ILLINOIS INSTITUTE\’//
OF TECHNOLOGY

Cooling scheme overview
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final initial

» Helical FOFO snake channel for initial cooling.

« Cools both signs of muons simultaneously.

« Solid wedge absorbers (LiH) + gas-filled RF cavities (GH2).
« 6D emittance: 5.6 (u’) and 6.2 (u*) cm?3 to 0.051 cm?.
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« Rectilinear vacuum RF 6D cooling channel (VCC).

« Multi-stage (8 stages) tapered channel with LH2 or LiH wedge absorbers.
« Single charge cooling.

» Two basic frequencies: 325 and 650 MHz.

* Final transverse emittance is 0.28 mm, longitudinal — 1.5 mm.
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Typical beam path in a HCC Conceptual design of the HCC

« Helical high-pressure gas-filled cooling channel (HCC).
« Continuous GH2 absorber.

« Solenoid + helical dipole (define reference trajectory) + helical
quadrupole (control dispersion, provide transverse stability).

- Multi-stage (4 stages) tapered channel: helical period decreases,
RF frequency increases (32526502975 MHz).

« High pressure gas reduces the probability of electric breakdown in
the RF cavity, allows higher operating E fields in strong magnetic

fields.
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« Charge separation section concept.
Separates charges after initial cooling.

« Can be used by HCC or VCC.

Trombones #

Match ~
| | |

\ Ki\cker
5 freq 3freq 1freq

101-540 MHz 650-1950 MHz 325 MHz

Longitudinal merge (21-7) Transverse merge (7-1)

Match

« Bunch merge section concept (VCC). Merges 21 bunches
into 7 longitudinally then 7 into one transversely. Combines
bunches after some 6D cooling.

* Overall transmission ~78%, emittance grows from 1.6 to
6.8 mm.
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RF cavities

LH, Absorber

Energy phase rotation

Early stages: RF inside transport Late stages: transport solenoid coils
solenoid coils inside induction linac

« Final cooling channel design with 30-25 T focusing field.

« Preliminary results for a complete design of a high field
cooling channel: transverse emittance 55 ym, longitudinal
=75 mm. (40 T could reach 25 ym.)

» Field flip frequency under study.

* |I'm sure there will be more details in Hisham Sayed'’s talk
ater in the session.
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« VCC: demanding magnet agsbsoter 50 cots | || o svemon ”
configuration, especially ot I | j —
toward the latter stages. g i : ;

* Azimuthal strain in the inner oo
solenoid (0.19%) is within ']

. . . . -0.24 IZ
Nb,;Sn irreversible limit wal T :
(0.25%). oy IS W
0.4 ’ 1361 M_:{(:Jlm
z (m) 3

HCC segment 1 - 1 m helical period, 325 MHz cavities, 10 cavities per period

« Obtaining the right ratio between
solenoidal, helical dipole and helical
quad components.

« HCC: integration of RF and helical
solenoid.
g | 7

Hﬁld
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Muon cooling channels require RF £4
operation in strong magnetic fields.

Gradients are known to be limited by
RF breakdown.

Extensive experimental program
underway at the MuCool Test Area
(MTA) at Fermilab.

Encompasses both vacuum and
high-pressure RF.

Multiple cavities with different surface
materials/treatments tested under a
variety of conditions.

Among those being tested is a 201
MHz single-cavity Muon lonization
Cooling Experiment (MICE) module.
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Spectrometer Solenoids

*——_—— with Sci-Fi Trackers

RF Cavities with
Coupling Coils

Absorber Modules

with Focusing Coils
9 Particle ID Detectors

 International Muon lonization Cooling Experiment (MICE) underway at RAL (UK).
« Step IV construction is at an advanced stage:
« Step V (sustainable cooling) configuration is shown.
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« Step IV construction is at an advanced stage:
— Both SciFi trackers have been fabricated and tested.
— Both spectrometer solenoid magnets are at RAL.
— The first AFC magnet has been trained for Step V.
— The LH2 absorber has been built and the delivery system tested.
— The next challenge is to combine the subsystems in the beam line with
suitable magnetic shielding.
* The construction of MICE Step V (sustainable cooling) is well
underway:
— All RF cavities and windows for the RFCC module have been
fabricated.

— An electropolished cavity is being outfitted for tests at the MTA and the
large coupling coil has been tested and accepted.

« Overall, MICE is progressing towards the first experimental study of

muon ionization cooling. Step IV is planned for 2015 and the
concluding Step V may be ready as soon as 2017.
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Summary

Systematic study of six-dimensional cooling and
the corresponding D&S effort are underway.

End-to-end simulations indicate that the desired
emittances are achievable in all cases of interest.

D&S group works in constant contact with other
groups (magnets, RF) to ensure the designs are
realistic.

RF breakdown issue is being studied, mitigation
strategies are being developed (MTA).

MICE muon ionization cooling demonstration is
imminent.
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Thank you!
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Backup slides
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Complex at Fermilab:
vSTORM = NuMAX
=» Higgs Factory

T T e T e

1 GeV Proton
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have a similar circumference as
the Tevatron Ring

A 6 TeV Muon Collider would J
111500
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